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Head-on collision of two coaxial vortex rings has been studied by joint experimental 
and numerical investigation. The Reynolds number, Re,, based on the initial 
circulation of the vortex rings, ranged from 400 to 2700. Besides numerical data, the 
vorticity field was also resolved by a non-intrusive visualization technique, LIPA, 
which enabled simultaneous measurement of velocities at multiple locations on a plane 
area. It was found that the enstrophy, rather than circulation, revealed three stages of 
evolution of the vortex rings prior to their breakdown. These include the free-travelling 
stage, stage of vortex stretching and the stage of viscous dissipation dominance. The 
results indicate that it would be incorrect to neglect the viscous effect, in particular, for 
the latter two stages of flow development. In fact, the rebound behaviour of the vortex 
rings for lower Re, is essentially a viscous phenomenon and is found to be closely 
related to the dissipation of enstrophy when the vortex rings are brought to interact 
actively with each other and is also related to the increase of the vorticity core diameter 
in the stage of dominance of viscous dissipation. Furthermore, an instant dimensionless 
group, N , / R e ,  based on the local vorticity distribution and the radius of a vortex ring, 
is found to be appropriate to characterize the onset of instability. Our investigation 
indicates that, in the range of observation, bulging instability will be observed during 
collision when N,/Re,  exceeds a critical value, (N,/Re&, which is a function of the 
initial core-size of the vortex ring. Comparisons showed that the numerical, measured, 
and visualization results were in consistent agreement; this not only enables us to assess 
the range of validity of the axisymmetry assumed for th’e numerical simulation, but also 
provides us with a rational basis for further analysis of azimuthal instability. 

1. Introduction 
Vortex rings have been a subject of interest in vortex dynamics because of a plethora 

of physical phenomena revealed by their motions and interactions with a boundary. 
The review article by Shariff & Leonard (1992) shows the rich variety of research in 
vortex rings, encompassing analytical, numerical and experimental results. In the 
present study, we are concerned with the problem of head-on collision of two coaxial 
vortex rings of opposite senses of rotation (see figure 1). In her visualization study, 
Oshima (1978) observed that the smoke cross-sections of vortex rings deform from a 
circular to a head with a long trailing tail during the collision; subsequently, the head 
pinches off from the tail and continually increases in radius. At larger radii, azimuthal 
waviness pinches to form a dozen or so smaller rings. Kambe and his coworkers 
(Kambe & Minota 1983; Kambe & Mya 00 1984) studied head-on collision by 
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FIGURE 1. The meridian cross-section of the physical problem and the definition 
of various lengthscales. 

numerical simulation, primarily to test theories of vortex sound generation. These 
authors indicated that the viscous effect is important during collision. On the other 
hand, Shariff et al. (1988), using contour dynamics, revealed some of the inviscid effects 
of head-on collisions of vortex rings and suggested that inviscid core deformation was 
sufficient for acoustic emission. Stanaway, Shariff & Hussain (1988) carried out a 
numerical study of the head-on collision of two vortex rings. They considered two 
different rings: one was a thin-core vortex ring with Gaussian distribution, and the 
other was a smoothed Hill’s vortex using direct simulations of the incompressible 
Navier-Stokes equations. Recently, Lim & Nickels (1992) used coloured dye to reveal 
the detailed structure of the small rings and several other features, including short- 
wavelength instability around the circumference of the colliding rings and a turbulent 
cloud with occasional appearance of small rings. Apparently, their experimental results 
indicate that the viscous effect plays a role during the process of interaction of the 
vortex rings. Unfortunately, the previous experimental results did not provide 
quantitative unsteady data such as for velocity and vorticity; it is, therefore, unclear 
under which conditions and to what extent the viscous effect is significant for the 
behaviours of the vortex rings during head-on collision. A satisfactory answer to this 
problem needs further experimental and numerical clarification. 

The present study is guided by flow visualization and will be restricted to the stages 
before the flow is unstable and becomes fully three-dimensional. In particular, we 
examine the possibility of rebound of the vortex rings, which is a strong indication of 
the viscous effect. Peace & Riley (1983) studied the rebound behaviour for a pair of line 
vortices approaching a stress-free plane boundary as well as a no-slip plane boundary 
and concluded that rebound is essentially a viscous phenomenon. However, there is no 
stretching effect in two space dimensions, and the effect has to be incorporated in the 
motion of vortex rings. Prior to azimuthal instability, the vortex rings are quite 
symmetric about their common axis, for which numerical analysis and quantitative 
measurement is carried out. The measurement is performed by the technique LIPA 
(laser induced photochemical anemometry) for measuring the velocity (vorticity) field. 
The technique enables simultaneous measurement of velocities at multiple locations on 
a planar area. This feature is of particular importance in understanding unsteady flows, 
and the technique has demonstrated some success for flow past a cylinder and for 
vortex rings impinging on planar surfaces (cf. Chu & Liao 1992; Chu, Wang & Hsieh 
1993). In order to have meaningful comparison between numerical and experimental 
results, the vorticity field is measured by LIPA after the vortex rings are well developed 
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FIGURE 2. (a) A sketch of the experimental apparatus; 1. Dual parallel piston system; 2.  PVC tubing; 
3. Vortex ring generating orifice; 4. Water or kerosene tank. (b) a detailed sketch of the vortex-ring- 
generating system; 1. Electromagnetic valve; 2. Pneumatic driving piston; 3. Dual parallel driven 
pistons; 4. PVC tubing; 5. Rigid connector. 

at 2.5 times the orifice diameter downstream of the generator. Finite-core assumptions 
based on the measured data served as the initial conditions for numerical simulation 
under the assumption of axisymmetric flow. Results will be presented for several 
trajectories associated with the vortex rings, contours of vorticity, circulation and the 
time variation of the total enstrophy along with its production and dissipation, a 
mechanism for the rebound of a vortex ring, and a criterion of bulging instability 
around the circumference of vortex rings. 

2. Numerical simulation 
2.1. Governing equations 

Refer to figure 1. The flow considered is that induced by a vortex ring with initial 
circulation r,* and initial radius R,* in the presence of a stress-free plane boundary 
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z = 0, where R,* is the distance between the vorticity centre of the ring core and the flow 
axis. The flow is assumed to be axisymmetric and incompressible with constant density 
and viscosity. The vorticity w thus contains only the azimuthal component, and with 
reference to the cylindrical coordinates, the Stokes streamfunction $ can be introduced 
such that 

u = - - -  1 a$ u = - -  1 a$ 
r a Z '  r a r '  

where ur, u, denote the velocity components. The governing equation can be written as 

Equations (2.1k(2.3) are cast in dimensionless form. The characteristic length, 
velocity, and vorticity are taken respectively to be R,*, T,*/R,* and r ,* /R,*2 ,  while 
Re, = r , * / v  is the Reynolds number with v the kinematic viscosity of the fluid. The 
initial vortex centre is then (1, t z,). 

The boundary conditions satisfied by the streamfunction $ and vorticity w are: (i) 
+(r, 0) = 0, and $(r, z) + 0, as (r2 +z2)li2 + co ; (ii) the stress-free boundary condition 
w(r, 0) = 0, and far-field condition w(r, z) + 0, as (r2 + zz)1i2 + co. 

2.2. Numerical method 
Both the vorticity equation and the Poisson equation for the streamfunction are solved 
by using the SOR (successive-over-relaxation) scheme. Substituting (2.1) into (2.2) 
yields 

It is this equation together with (2.3) to which the numerical scheme is applied to 
continue the solution. The computational domain is of [0, W] x [0, HI, in which 
( N +  1) x (M+ 1) grid points are distributed. 

The grid distribution in the r-direction is of the form r(X) = a, X +  a, X' in order to 
make sure that the grid spacing near the axis (r = 0) is uniform and small enough while 
the mesh in the z-direction is determined by a polynomial of order 5 ,  

z(Y) = b, Y+b, Y2+ ...+ b, Y5, 

in order to have a dense distribution near the vortex centre as well as the colliding 
surface. The coefficients a, and a, are determined by: (i) r ( N )  = W; (ii) the requirement 
that about 80 % of the grid points in the r-direction be inside half the domain [0, W]. 
The coefficients (bl, . . . , b,) are determined from the following conditions: (i) the grid 
spacing at z = 0 is 2(At/Rer)l", where A t  is the timestep; (ii) z ( M )  = H ;  (iii) 60% of 
the grid points in the z-direction are inside [O,z,]; (iv) the grid spacing at  the initial 
vortex centre (z = z,) is of size 4(At/Re,)li2; (v) the grid points are most dense at the 
initial vortex centre and along the colliding surfzce. 
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With the grid distribution r = r ( X ) , z  = z ( Y ) ,  (2.4) and (2.3) can be rewritten as 

where 

Central difference approximation is then applied to obtain the difference represen- 
tations of the above equations, which are 

(2.7) 

(2.8) 

- - ai,j ~ i - i ,  j + bi, j W i + l , j  + ci, j ~ i , j  + 4, j W i ,  j -1  +ei,j W i , j + l ,  

- - y . W .  a t , ?  . = a. a , ?  .$. a - 1 8 j  + bi3j @ i + l , j  + Ci3j $ i ,  j + 4 , j  + i , j - l +  ci,j @ i , j + l *  

With vorticity field W" given at timestep t,, the streamfunction can be found by solving 
(2.8). The convergence of solving the streamfunction in the SOR scheme is checked by 
comparing the maximum norm of the difference of @ i , j  in two successive iterations with 
the value of ef, which is of order in the present study. The vorticity field w"+' at 
the next timestep is obtained by solving the following equation: 

W"+l - W n  

At 
= + A(+", w")]. 

The procedure is as follows: (i) denote the value of w"+l at thejth iteration by with 
Wn+l (,,) = w";  (ii) solve (2.8) to obtain and update the value of w;Zi:l at the boundary; 
(iii) obtain wTzl) by solving (2.9) with w"+l substituted by wyA1, and $"+I by $7;'; (iv) 
check the convergence of w?Zl) by comparing the maximum norm of 1~::~) - o;lj?'l with 
the value set by eu, which is of order if the convergence condition is not satisfied, 
repeat (ii)-(iii). 

3. Experimental details 
3.1. Experimental apparatus 

Experiments were carried out in a glass tank which was 120 cm long, 33 cm wide, and 
33 cm high with water or kerosene as the working fluid for qualitative and quantitative 
investigation, respectively. The experimental apparatus is shown schematically in 
figure 2, and consisted of a vortex ring generating system and a control system. The 
vortex ring generating system, shown in figure 2 (b), included a pair of parallel pistons 
and sharp-edged orifices. 
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This pair of parallel pistons was rigidly connected to a pneumatic piston-and- 
cylinder, which was powered by high-pressure compressed air. Each of the pistons was 
connected to a sharp-edged orifice by PVC tubing filled with the working fluid. The 
stroke of the pneumatic cylinder was fixed at 1.5 cm, and the speed of the motion of 
the piston was varied from 3.5 to 6.4 cm s-’, depending on the released pressure of the 
exit valve on the pneumatic piston-and-cylinder. When the electromagnetic valve was 
energized, the high-pressure air pushed the piston to move at a constant speed in the 
cylinder, driving the pair of pistons synchronously. As the pistons moved, a slug of 
fluid was released from each of the orifices and rolled up into vortex rings moving 
towards each other in a common axis. For each size of vortex ring generator, there were 
three parameters in the vortex-ring-generating system that affected the Reynolds 
number of the vortex ring: the inner diameter of the piston-and-cylinder, the stroke of 
the piston, and the speed of the piston. In the present study, the dimensions of the 
piston and the stroke of the piston were fixed, and the speed of the piston was the only 
parameter that could be varied to generate the vortex ring at different Reynolds 
numbers for each size of orifice. In order to have a thorough investigation on azimuthal 
instability, three sizes of inner diameter of the orifice were used for experiment, which 
were 38 mm, 32 mm and 23.5 mm. The distance between the exits of two orifices was 
also varied from six to twelve times the orifice diameter. 

3.2. Experimental methods 
3.2.1. Flow visualization by dye-injection 

The flow visualization of the global phenomena was performed in a water tank. The 
vortex rings were made visible by neutrally buoyant dyes in each of the vortex-ring 
generators. Blue and red food colours were pre-injected into each of the vortex-ring 
generators, respectively. Once the discoloured fluids were pushed out of the exit of the 
generator by pistons, two vortex rings which were of different colours were formed 
which enabled us to visualize the global phenomena during the collision process. Visual 
data were recorded on Kodak 100 negative film using a Nikon F-3 camera with a 
motor drive or a Photosonics 35 mm movie camera. 

3.2.2. Laser-induced photochemical anemometry (LIPA) 
Laser induced photochemical anemometry (LIPA) is a non-intrusive optical 

technique which enables simultaneous measurement of unsteady velocities at multiple 
locations on a planar flow area. The historical review of LIPA was given by Chu & 
Liao (1992). When a photochromic chemical is added into a fluid and is homogeneously 
dispersed, a grid of pulsed laser beams passing through the doped fluid results in a 
colour change along the beams because of the phenomenon of photochromism. The 
excitation time of the chemical is long, compared with the timescale of the flow. Thus, 
the discoloured grid consists of timelines which contain fluid material of fixed identity. 
As the fluid continues to move, the grid, marked by the colour, will have significant 
distortion during the excitation time of the chemical. Only two images are needed to 
calculate the flow information from the motion of each intersection point over the grid 
area. The chemical added to the fluid in the current study was 8 p.p.m. of Kodak long- 
time photochromic chemical (1,3-trimethyl-8-nitrospiro [2-H- l-benzopyran-2,2’-indo- 
line]). The working fluid was deodorized kerosene (FC-180). The UV light source was 
a Lambda Physik LPX-200 excimer laser running on XeF with approximately 150 mJ 
output and a 20 ns pulse duration with an adjustable repetition rate from 1 to 100 Hz. 
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3.2.3. Flow visualization by photochromic timelines 
Flow patterns can be visualized by the generation of photochromic timelines in the 

meridian plane of each vortex ring before collision. Thus, the rolling-up of the timeline 
marks in each of the vortex rings can be clearly observed during the collision process. 
Figure 3(a) shows a sketch of the optical set-up of the photochromic timeline 
visualization. The repetition rate was set at  40 Hz, and the images were recorded by a 
Nikon F-3 camera on Kodak 100 film. 

3.2.4. Large-Jield measurement 

Figure 3 (b) shows a schematic drawing of the LIPA set-up used to obtain the large- 
field information. Figure 4 shows two photos of an LIPA grid and its distortion as the 
fluid moves. The grid lines are about 150 pm wide, and the mesh size is about 2 mm 
square. Because the history of each specific grid point is known, we are able to compute 
the velocity according to the displacement of each grid point, deduced from the two 
photographs shown in figure 4. The details of the procedure for conversion of 
displacement to velocity at  each grid point, the calculation of circulation and vorticity 
associated with a small area surrounded by four adjacent grid points, and the analysis 
of uncertainty in estimating vorticity from the measured velocities have also been 
presented by Chu & Liao (1992). 

The large-field measurements in the present study were limited to the axisymmetric 
cases before the appearance of azimuthal instability of the vortex ring. The initial 
vorticity distribution of a vortex ring as well as its dependence on the dimension of the 
orifice and the Reynolds number were obtained by using this method. In each run of 
the experiment, the measuring area was adjusted to cover the region of interest in the 
meridian plane according to the result of flow visualization at different times. A total 
of three to five locations were chosen to obtain the large-field information before and 
after collision. The criterion to examine whether a set of data is qualified to reconstruct 
the unsteady flow information was based on the initial Reynolds number. During the 
large-field measurement, we simultaneously monitored the Reynolds number at  the 
location where the initial condition of the vortex ring was determined. Therefore, a set 
of data was acceptable provided the initial Reynolds number of the vortex ring varied 
less than 4 940 from the pre-set value. For each measurement location, at least three sets 
of qualified data were collected to examine the repeatability as well as calculate the 
average circulation and enstrophy. Before the collision, the values of the qualified data 
were usually within a 5 %  variation of the mean value. 

The sequence of the experimental procedures, timing of image recordings, and time 
delays of the stroboscope were synchronized by an IBM personal computer. The 
images were recorded on Kodak 2415 Technical pan film by a Photosonics 35-4ML 
cine camera or a Nikon F-3 camera with a motor drive. The films were magnified and 
digitized by an NAC film motion analyser with a spatial resolution of 0.02 mm. The 
reading error in locating the centre of each intersection point was about 8 %, based on 
the width of the grid line. Thus, the uncertainty of the estimated vorticity was f 1.5/s 
in the present study, according to Chu & Liao (1992). 
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FIGURE 3. (a) Optical set-up of the flow visualization generated by photochromic timelines; 
(b) optical set-up used to generate a grid of laser beams over a planar area. 

4. Results and discussion 

4.1. Initial conditions 
The visual information indicates that the vortex ring was fully formed at a distance of 
2.5 times the orifice diameter downstream of the orifice exit, which was designated as 
the initial location of the vortex ring, Z,* (see figure 1 for definition). Therefore, the 
associated information including the initial radius, R,*, circulation, Reynolds number, 
and vorticity distribution at the initial location was counted as the initial conditions of 
a vortex ring for both experiment and calculation. In both dye-injection flow 
visualization and photochromic timeline visualization, we were able to estimate the 
vortex ring diameter, 2R,* (see figure 1 for definition), and its translational speed, U*,  
and then calculate the Reynolds number by the definition Re = 2U*R,*/v. The 
uncertainty in calculating Re was about 4 YO in the range of study. Actually, the vortex 
ring slows down gradually after it is completely formed while the vortex ring diameter 
increases gradually because of viscous diffusion. Therefore, Re changes slightly before 
head-on collision. Using the large-field measurement, we were able to estimate the 
circulation, I-,*, so that the Reynolds number, Re, = r , * / v ,  could be determined. The 



Head-on collision of two coaxial vortex rings 47 

FIGURE 4. Two photographs showing the LIPA grid used to measure the large field 
information; (a) the laser grid; (b)  25 ms later. 

initial radius of a vortex ring, R,*, is defined as the distance between the dyed centre and 
the flow axis in the meridian cross-section by flow visualization at its initial location. 
According to the present result, the relationship between the Reynolds numbers 
obtained by flow visualization (Re) and those of large-field measurement (Re,) can be 
approximately expressed as Re, M 2.1 Re in the range of observation regardless of the 
dimension of the orifice, which is very similar to the result obtained by Chu et al. 
(1993). 

Results of large-field measurement show that the initial vorticity distribution in the 
core region of a vortex ring can be approximately represented by a finite core, 
sech2(s/c,,), where s is the dimensionless distance from vortex centre and the 
dimensionless core-size, c,,, depends on the Reynolds number and the value of orifice- 
diameter to piston-stroke ratio, D / L .  The value of c,, was calculated by curve-fitting 25 
data points uniformly taken from the two mutually perpendicular axes at the centre of 
the initial vorticity contours in the region of s < 0.5. Figure 8(a)  shows the 
corresponding values of c, for various Re, as well as various values of D / L .  Note that 
the open circles shown in the figure are the measured data points for c, while the 
respective uncertainty for Re, and c,, are also presented. In the present study, the stroke 
of the generating system was fixed. Thus, for a fixed Re,, the relationship between the 
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FIGURE 5 (a-d). For caption see facing page. 

core-size, co, and the dimension of the orifice is quite apparent, that is, a vortex ring 
with more concentrated vorticity distribution will be obtained by a larger orifice. 

4.2. Scope of present study 
Experimental flow visualization was carried out in the range from Re z 400 to 1300 
(i.e. Rer= 850 to 2700) while the initial separation of two vortex rings, 
so = S,*/R,* = 2Z,*/R,*, was set to be from four to ten (see figure 1). Numerical 
calculations were performed for Re, between 400 and 2500. The initial conditions of 
calculation were provided according to those shown in figure 8(a). The value of 
so was set to be 4, 6 and 8 ,  respectively, while the value of co was chosen between 0.12 
and 0.25. The calculated result as well as those obtained by experiment will be 
presented in the following sections in dimensionless form. Recall that the spatial 
coordinates Y and z are in dimensionless form normalized by the initial radius of a 
vortex ring, R,*. It is found that 200 x 180 grid points distributed in the computational 
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FIGURE 5.  Results of flow visualization obtained by photochromic timelines at Re,.% 1500 with 
c, z 0.18 and so z 8. (a) t z 10.0; (b) t z 13.3; (c) t z 15.0; (d) t x 16.6; (e) t x 18.3; ( f )  t z 20.0; 
(g) t z 21.6; (h)  t x 23.3. 

domain of [0, W ]  x [0, HI = [0,20] x [0,14] in (r ,  2)-space is sufficient for the present 
calculations. The dependence of the calculated enstrophy on the grid point distribution 
will be presented in figure 11. The calculations were performed on a Cray-YMP-EL; 
each timestep took about 1 CPU s. 

4.3. Basic flow features 
The general flow features observed in the head-on collision of two coaxial vortex rings 
are presented as follows. Figure 5 displays a sequence of photographs, taken by a 
Nikon F3 camera with a motor drive, which present the evolution of the head-on 
collision of two vortex rings at Re, z 1500 with co % 0.18 and so % 8. The photographs 
shown in figure 5 are the images of the meridian cross-section of the vortex rings 
marked by photochromic-dye tracers. Figure 5 shows that, when the two vortex rings 
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FIGURE 6. Trajectories of the loci of the vortex-ring core for various Reynolds numbers; vortex 
centres by flow visualization and vorticity centres by numerical calculation. 

had opposite senses of rotation travelling towards each other, the velocity induced by 
one vortex ring on the other caused both vortex rings to grow in diameter and to 
proceed to stretch the vortex. During the stretching of vortex rings, the shape of a head 
with a long trailing tail was observed on meridian cross-sections as shown in figure 
S(f-h) .  The plane of symmetry of the collision of two vortex rings drawn in figure 1 
is also clearly observed in figures 5(c-d). The trajectories of the dyed vortex centre for 
Re, z 850 and 1250 are shown in figure 6, where the trajectories of the calculated 
vorticity centres are also presented, including the cases of Re, = 400, 1000, 1500 and 
2000 as well as the case of inviscid calculation with a finite core. 

The results of global flow visualization indicate that when the vortex rings came 
together and stretched actively with each other, dyed bulges around the circumference 
of the vortex rings were observed to appear (cf. Khorrami 1991 ; Lim & Nickels 1992) 
for Re, > 1500. At this moment, the azimuthal component of velocity must exist in 
bulges and the flow may no longer be axisymmetric. Figure 7 shows an example of the 
oblique view of the bulging instability at various values of time for Re, z 2100 with 
c, z 0.14 and so z 8. It is seen in figure 7 that several dyed bulges were observed to 
develop around the circumference of the vortex rings when their radii had increased to 
about four times the initial radius (i.e. Y, = R,*/R? z 4); however, the dyed bulges 
continued to grow and then distorted instead of breaking-up towards the end of 
collision. It was found that the onset of bulging instability depended on the Reynolds 
number, Re,, the initial separation of two vortex rings, so, and the core-size, co, of the 
vortex ring. Figure 8(a) presents the onset boundary of bulging instability in the Re, 
us. co diagram obtained by collecting the visual result of all different D / L  by varying 
initial separation of vortex rings, so. The onset boundary of bulging instability 
associated with various initial separations, so, are marked as narrow regions instead of 
single lines in order to include the uncertainty of the laboratory observation. It is 
noticed that the visualized results were obtained along the three D / L  curves ; therefore, 
the onset region associated with each so was connected based on the three sets of 
visualized data. It is assumed that the regions between the three D / L  curves follow a 
trend similar to those observed along the three D / L  curves. Figure 8(a) shows that, 
apparently, the Reynolds number associated with the onset of bulging instability 
increases with the increase of the initial separation of two vortex rings, so, while under 
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FIGURE 7. (a) An oblique view showing the bulging instability during collision for Re, FZ 2100 
with c,, = 0.14, at t = 21, 23.2, 2.32 and 45.2, respectively. 

the same initial separation, so, the bulging instability will be observed, basically, at a 
higher Re, for a vortex ring with a smaller core-size, c,, in the range of observation. 
For a specified onset boundary, the bulging instability will be observed to appear if the 
initial condition of two vortex rings, including Re,, co and so, locates on the left-hand 
side of this boundary. For example, the case of Re, = 1800 with c, = 0.12 will be a 
stable case or a case without bulging instability as long as the initial separation of the 
two vortex rings, so, is larger than 8 while the case of Re, = 1800 with c, = 0.15 will 
be an unstable case if so d 6. Visual results also indicate that the smaller the core- 
size of a vortex ring is, the smaller the value of r ,  associated with the onset of the 
bulging instability will be. On average, the values of r, associated with the first 
appearance of dyed bulges were about 3.2, 4 and 5.4 for D / L  = 2.6, 2.1 and 1.6, 
respectively. In figure 8 (a), we also observe that, for an onset boundary associated with 
a fixed so, once Re, reaches the critical value for bulging instability, the increase of Re, 
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FIGURE 8 (a) .  For caption see facing page. 

will result in a smaller value of r, when the dyed bulges first appear. As Re, continued 
to increase, short-waves were observed to appear. For higher Re,, the bulges grew and 
then broke up into small rings. For even higher Re,, flows could become turbulent. 
These observed flow features such as short waves and small vortex rings are consistent 
with the observations obtained by Lim & Nickels (1992). Figure 8 (b) presents a sequence 
of photographs showing the observed flow phenomena when Re, was increased along 
the curve of D / L  = 1.6, indicated in figure 8(a), while the initial separation of vortex 
rings, so, was fixed to 8. In addition, the initial number of dyed bulges was eight (see 
figure 8(b), Re, z 1800) which were symmetrically distributed around the cir- 
cumference of each vortex ring, and increased as Re, went up. The phenomenon in the 
case of Re, z 2700 shown in figure 8(b) was very similar to the pattern observed in the 
aircraft trailing vortices. The number of small vortex rings observed in the case of 
Re, z 2700 was about eighteen which was consistent with the observation made by 
Lim & Nickels (1992). They also estimatedlhe wavelength of the instability according 
to Crow’s inviscid model (Crow 1970) by counting the number of vortex rings and 
obtained a rough agreement with their experimental observations. Discussion will be 
continued in $4.5 for bulging instability. 

On the other hand, the flow feature of rebound was observed to be associated with 
low-Reynolds-number cases shown in figure 6; that is, the calculated vorticity centres 
gradually moved toward each other and eventually moved away or rebounded from 
the plane of symmetry during collision. Because it is difficult to obtain perfectly 
symmetric images from flow visualization at low Reynolds numbers especially for 
rv > 3 during vortex stretching, in the present study, the rebound phenomenon of the 
vorticity centre of a vortex ring is identified based on the results of numerical 
calculation. Although the results of Oshima (1978) and Kambe & Mya 00 (1984) 
might imply this feature, the rebound phenomenon was not addressed in their reports. 
The detailed mechanism of rebound phenomenon will be discussed in $4.6. 
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FIGURE 8. (a) The onset boundary of bulging instability in the Re, to co diagram obtained by collecting 
the visual results of all different orifice-diameter to piston-stroke ratio, D / L ,  under varying initial 
separation of vortex rings, so, where the onset boundaries of bulging instability are marked according 
to the various initial separation, so. Note that the open circles shown in the figure are the measured 
data points for co;  typical error bars for Re, and co are also shown in the figure. (b) Photographs 
presenting the observed flow phenomena including no bulging instability, bulging instability, short 
waves and small vortex rings with increasing Re, along the curve D / L  = 1.6 shown in (a). 
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FIGURE 9. (a) Measured velocity field and vorticity distribution at different times for Re,. z 2070 with 
co = 0.14 and so = 6. (b) Vorticity contours at different times for Re,. = 2000 with c, = 0.15 and so = 6 
obtained by numerical simulation. 

4.4. Three stages of vortex evolution 
More flow physics, especially the vortex evolution associated with the head-on collision 
of two vortex rings, will be revealed based upon the present experimental and 
numerical results. Figure 9(a) presents an example of the results of the large-field 
measurement for Re, z 2070 with c, z 0.14 and so = 6, including the instantaneous 
velocity field and equivorticity lines at various times while figure 9(b) presents the 
equivorticity lines obtained from numerical simulation for Re, = 2000 with co = 0.15 
and so = 6 at different times. It is noticed that each set of the instantaneous velocity 
field and its corresponding equivorticity lines at various times shown in figure 9(a) were 
reconstructed from different runs of experiment under the criterion presented in 53.2.4. 
For each time instant, the velocity field and vorticity contours was obtained by a single 
experiment without any average involved. It shows good agreement between the 
calculated results and those shown in figure 9(a). The details of data reduction and the 
estimation of uncertainty were presented in Chu & Liao (1992). The uncertainty 
associated with the equivorticity contours was about 1.5/s which was about 4-6 YO of 
the measured peak vorticity. In addition, figure 10 shows good agreement between the 
calculated and the experimental results of the evolution of circulation and enstrophy 
for various Re,. The time evolution of circulation, shown in figure 10, is qualitatively 
similar to the result obtained by Stanaway et al. (1988) though the initial vorticity 
distribution was different. Circulations associated with the vortex rings were obtained 
by integrating along the boundaries of the specified regions according to the vorticity 
distribution. The total enstrophy, E, i s , ,wz  dV, in any specified volume was also 
estimated by calculating the square of vorticity in the annulus. Thus, in figure 10, the 
maximum uncertainty in the estimation of the enstrophy will be around 10 YO which is 
approximately twice the value of the uncertainty of vorticity. Regarding the uncertainty 
of the circulation, it would be less than that of enstrophy due to the integration of (u-dl) 
was calculated instead. Recall that the values of the qualified data are within 5 %  
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FIGURE 10. The time evolution of (a) circulation and (b) enstrophy for various Reynolds numbers - 
experimental and numerical results. Note that the values of enstrophy have been normalized by their 
initial values. 

variation of the mean value before the vortex rings interact with each other. However, 
this amount of variation would increase with increasing vortex ring diameter owing to 
the limit of the spatial resolution in the present measurement technique. When the 
amount of variation was over 10% of the mean value we stopped sampling the data 
thereafter. The trend of changes of circulation and enstrophy in the present study are 
similar to those of the numerical simulation by Kambe & Mya 00 (1984). 

To gain further insight into the vortex evolution, first, the fundamental equations 
will be used to analyse the variations of circulation and enstrophy of the vortex rings 
during the evolution of head-on collision. Then, the results will be discussed based 
upon these analyses. 

Consider the loop 1-2-341 denoted by C in figure 1. The circulation r, is defined 
to be $,u-dl, and its rate of change can be written as 

1 - dT - - --f (V xo),dZ= 
dt Re, 

where we recall that w is the azimuthal component of vorticity normal to the (r,z)-  
plane. It should be noted that the contour C,  1-2-341, is large enough to include all 
vorticity concerned. 
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FIGURE 11. (a) The dependence of the evolution of enstrophy on the grid point distribution for 
Re,. = 2000; (b) the variation of enstrophy according to (4.2) for Re, = 2000, including the effect of 
vortex stretching and that of viscous dissipation. 

Let V be the volume specified as the revolution about the z-axis of the area S 
surrounded by 1-2-3-4-1 according to figure 1. The total enstrophy E, a sv w2 d V, is 
always positive and can be considered to be a quantitative measure of the vortical 
activity of a vortex motion. The rate of change of the total enstrophy in cylindrical 
coordinates can be expressed as 

The first term in the integrand of (4.2) represents the effect of vortex stretching, which 
typically will enhance the total enstrophy during vortex stretching while the second 
term is a sink term to dE/dt, signifying the effect of viscous dissipation. Figure 11 
shows a typical example of the variation of enstrophy by numerical calculation 
according to (4.2) for Re, = 2000 with co = 0.15 and so = 6 .  Apparently, the time rate 
of change of the total enstrophy depends on the competition between vortex stretching 
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and viscous dissipation, and each of them is dominant at different stages during the 
collision. Compare the two plots shown in figure 11. It is meaningful to separate the 
whole evolution of the head-on collision of two coaxial vortex rings or of a vortex ring 
approaching a stress-free surface into three stages, i.e. the free-travelling stage, vortex- 
stretching stage, and stage of dominance of viscous dissipation. These are similar to 
those mentioned by Chu et al. (1993) in their study of a vortex ring normally 
approaching a solid surface or a slightly contaminated free surface, in which the whole 
evolution can be separated into three stages, i.e. the free-travelling stage, vortex- 
stretching stage, and vortex-rebounding stage. Figure 1 1 also presents the dependence 
of the numerical calculation on the grid distribution. Recall that 200 x 180 grid points 
distributed in (r,z)-space were used in the present study for Re, = 2000. 

In this vortex-ring flow, the relationship between the rate of change of total kinetic 
energy, K, and the enstrophy can be represented by the following equation: 

(4.3) 

In the present study, vortex rings are completely formed at about 2.5 times the orifice 
diameters downstream of the exit of the orifice. In addition, no azimuthal instability 
is observed in vortex rings just when the collision of the vortex rings begins. Therefore, 
the experimental conditions match the assumptions of the above analyses. In the 
following, we will focus on the variations of circulation, enstrophy, and kinetic energy 
of the vortex ring during the three stages of head-on collision prior to the appearance 
of azimuthal instability. 

4.4.1. Free-travelling stage 
When a vortex ring is in the free travelling stage, it is the viscous diffusion that causes 

the decrease of peak vorticity in the vortex ring centre. The experimental evidence (see 
figure 9) confirms this observation. 

In the free-travelling stage, suppose the integration loop 1-2-3-4-1 shown in figure 
1 is considered, and the vorticity gradient is zero when r is large; thus, (4.1) can be 
further reduced to 

Figures 9 (a, b) show that the vorticity gradients are small near the z-axis of the vortex 
ring; thereafter, a slight change of circulation is expected when the vortex rings are 
some distance apart. Figure 10(a) shows that the trend of the variation of circulation 
agrees with the analysis. 

As far as the change of enstrophy is concerned, the first term on the right-hand side 
of (4.2) is negligible because of the lack of significant stretching and owing to the small 
vorticity gradient as well as the magnitude of vorticity. Thus, (4.2) can be further 
simplified as 

Definitely, the enstrophy will decay when the vortex ring is in the free-travelling stage 
according to (4.5). The variations of enstrophy shown in figure 10(b) indicate a similar 
trend of dependence on the Reynolds number. The present results also show agreement 
with the previous study by Chu et al. (1993). 
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4.4.2. Vortex stretching stage 
When the vortex rings come close enough, they interact with each other and proceed 

to vortex stretching. The results of flow visualization show that, during head-on 
collision, the vortex ring will increase in size to about four times its initial diameter. The 
severe stretching causes a sudden increase of peak vorticity. This can be seen in the 
vorticity contours of figure 9. 

Figure 10(a) shows that the circulation of a vortex ring decays gradually during 
vortex stretching. As we follow the loop 1-2-341 shown in figure 1, (4.1) can be 
reduced to 

The results shown in figures 9(a, b)  indicate that both terms on the right-hand side of 
(4.6) are negative in sign; the value of the circulation r of 1-2-3-41 will therefore 
decrease as time is increasing. The results shown in figure lO(a) agree with this analysis. 

It is shown in (4.2), apparently, that the variation of enstrophy depends on the 
competition between vortex stretching and viscous dissipation. Figure 10(b) shows that 
the enstrophy has a sudden increase in the early stage of vortex stretching because of 
the dominance of the stretching effect, represented by the first term inside the integrand 
of (4.2). Until the scale of the vortex ring core decreases to a certain limit owing to 
stretching, the vorticity gradients become so large that the contribution of the viscous 
dissipation term in (4.2) overcomes that of the stretching term (see figure 11). 
Therefore, the enstrophy will decrease again as shown in figure lO(b). On the other 
hand, the sudden increase of the enstrophy during the stretching process will enhance 
the dissipation of the total kinetic energy of the vortex ring according to (4.3). Thus, 
during vortex stretching, the enhancement of the vortical activity is always 
accompanied by a speeding up of energy dissipation. 

4.4.3. The stage of dominance of viscous dissipation 
As shown in figures 10(b) and 11, when enstrophy reaches its peak value, the vortex 

evolution shifts to the stage of dominance of viscous dissipation. From that moment 
on, the effect of viscous dissipation overcomes that of vortex stretching. However, 
results from flow visualization and numerical calculation indicate that flow features 
associated with the stage of dominance of viscous dissipation, rebound or bulging 
instability, depend on the Reynolds number and the initial separation between vortex 
rings. Now, we present the details of bulging instability and rebound in the following 
sections. 

4.5. Bulging instability 
As shown in figure 8 (a) ,  the phenomenon of bulging instability depends primarily on 
the Reynolds number, R e ,  the initial separation of vortex rings, so, and the core-size 
of the vortex ring, co. In addition, the radii of vortex rings associated with the 
appearance of dyed bulges were about three, four and five times their initial values for 
the orifice-diameter to piston-stroke ratio, D / L  = 2.6, 2.1 and 1.6, respectively. 
Further discussion will be focused on the quantitative aspect of the onset of bulging 
instability via numerical computation such that a local dimensionless group would be 
expected, which may characterize the onset for bulging instability around the 
circumference of vortex rings during collision. 
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FIGURE 12. (a)  An example of vorticity distribution along the (z,,z,)-axis for Re,. = 1000 with 
c,, = 0.20 and the definition of the diameter of the vorticity core 2a*; (b)  the radius of a vortex ring 
at various times, where the contours are the equivorticity lines. 

A qualified candidate of the dimensionless group should be responsible for both 
global and local evolutions during vortex stretching. Let us consider the situation 
associated with the vortex ring during collision. The vortex lines of a vortex ring are 
subjected to stretching in its azimuthal direction. The instant peak of vorticity at the 
vorticity centre, Iw*l,,, = lw*lmuz(t), and the diameter of the vorticity core, 
2a* = 2a*(t), defined as the distance in the z-direction between the locations where the 
value of local vorticity decreases to ~Iw*l,,, as shown in figure 12(a) according to the 
vorticity distribution along the (z,, z,)-axis, are the key parameters in response to the 
local evolution of a vortex ring. As far as global evolution is concerned, the radius of 
a vortex ring, R,* = R,*(t), or the radius of curvature of the vortex line passing through 
the vorticity centre adequately describes the increase in size of the vortex ring during 
collision. Accordingly, an instant dimensionless parameter, N,, which is defined by 
Nt = (2a*lw*I,,, R,*)/v = 2 a ~ ~ ~ ~ , , r ~  Re, or NJRe,. = 2alwl,,, rv, may characterize the 
onset for bulging instability along the circumference of a vortex ring, where a = a*/R,*, 
~w~, , ,  = IW*(,,,(R,*~/~,*) and rv = R,*/R,*. We think that the bulging instability is not 
merely a lengthscale or a velocity-scale problem. The definition of N ,  incorporates the 
(global) lengthscale as well as (local) velocity scale implicitly. This dimensionless 
number is different from the local Rossby number defined by Spall, Gatski & Grosch 
(1987), which deals with the vortex breakdown in vortices with a strong axial velocity 
such as trailing wing-tip and leading-edge vortices. In the following, the evolution of 
N,/Re, will be presented, since, as indicated, Nt itself involves the Reynolds number 
effect. Recall that for the same R e ,  the core-size, c,, of a vortex ring will be different 
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owing to the difference of D / L ,  and thus the value of N,/Re, will be a function of co 
implicitly. 

Refer to figure 8(a); the cases with core-size c, = 0.15 can be chosen as typical 
examples to examine the evolution of Nt/Re, since it crosses several onset boundaries 
of bulging instability as Re, increases. Figure 13(a) presents the evolution of NJRe,  
during collision for the core-size c, = 0.15, which includes the results of Re, = 1500, 
1800 and 2000. For each Re, shown in figure 13 (a),  the initial separation of so = 4, 6 
and 8 was studied, respectively. Let us first examine the result of Re, = 1800 with 
c, = 0.15. It is seen in figure 8(a) that the onset of bulging instability should occur 
between so = 6 and 8, which is about 7. By examining the evolution of N,/Re, 
presented in figure 13(a), it appears that there exists a threshold (Nt/ReJc,. or a 
sufficient condition of NJRe,  for bulging instability, which is about 6.3, and that over 
this bulging instability will occur. Let us further examine the case of Re, = 2000 with 
c, = 0.15. The calculated result shown in figure 13(a) indicates that the values of 
NJRe,  exceed the threshold or 6.3 for both so = 6 and 8 during collision. Therefore, 
the appearance of bulging instability is guaranteed. With regard to the case of 
Re, = 1500 with c, = 0.15, according to figure 13(a), the maximum value of NJRe,  is 
very close to, but less than, the critical value, 6.3 for the initial separation of so = 4. 
Therefore, the case of initial separation so = 4 is a marginal case in the sense of the 
onset of bulging instability, not to mention so = 6 and 8. The experimental observation 
shown in figure 8 (a)  does confirm these judgements. In addition, figure 13 (b) presents 
the time evolution of the calculated radius of vortex ring during collision for the cases 
of c, = 0.15. Figure 13(b) shows that, for the case of Re, = 1800 with so = 7.2 which 
is very close to the onset boundary, the radius is about four when the peak value of 
NJRe, occurs as indicted in figure 13(a), which is consistent with the result observed 
in flow visualization. Furthermore, for the case of Re, = 2000 with so = 8, the radius 
is about 3.5 when the value of NJRe,  crosses the threshold, which also agrees with the 
result of flow visualization. The consistency of the radius-to-time relation further 
ensures the validity of the threshold for bulging instability. 

Similarly, by combining the visual result shown in figure 8(a) and the result of 
calculation shown in figure 13(c), the threshold of NJRe,  for the core-size c,  = 0.12 
can also be found, which is about 6.8. For the case of Re, = 1800 with so = 6, the 
corresponding value of r, shown in figure 13(d) is about 3.3 when Nt/Rer crosses the 
critical value, which is very close to the result of flow visualization. Following the same 
procedure, the critical value of NJRe,  for the core-size c, = 0.20 can also be found, 
which is about 5.6. Therefore, vortex rings with a smaller core-size, c,, will result in a 
higher critical value of Nt/ Re, for bulging instability. 

Several salient features of the sufficient condition, N J R e , .  for bulging instability are 
described as follows. First, since w,,, is a function of time, Nt/Re, = 2alol,,,r, 
involves viscosity implicitly, though viscosity does not appear explicitly in this ratio. 
Secondly, for a vortex ring with a vorticity core diameter 2a, the value of NJRe,  will 
be a function of r, /a,  for lwIrnaz - &/a2 and Nt/Re, - 2aT,r,/a2 - r , /a .  Figure 
13 (a, c) shows that vortex rings initially having a smaller c, or a larger r,/a will result 
in a larger value of NJRe,. Moreover, in the vortex stretching stage, the value of 
NJRe,  almost always increases linearly with the decrease of 2a/r, for 2a/r, > 0.075 as 
indicated in figure 13(e). Thirdly, bulging instability of a vortex ring is typically 
observed in the stage of vortex stretching. This is in contrast to the cases for a single 
vortex ring observed by Maxworthy (1972) and Widnall, Bliss & Tsai (1974), which 
indicated that wavy instability would be observed instead of bulging instability. Figure 
13(a, c) confirms that, during the free-travelling stage, the value of N,/Re, may even 
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FIGURE 13 (a, b). For caption see p. 65. 

decrease with the decrease of rv/2a owing to viscous diffusion. Lastly, the value of 
N,/Re, is not a ratio of circulation according to the definition of N , ;  otherwise, the 
value of NJRe,  definitely would decrease during collision because of the decrease of 
circulation in the vortex stretching stage shown in figure lO(a). 

On the other hand, an interesting necessary condition related to bulging instability 
was also observed based on the present calculation, which is the evolution of 2a/rv,  the 
vorticity core diameter to vortex ring radius ratio, presented in figure 13 cf). It is found 
that when bulging instability occurs, the value of 2a/r,  is always about 0.06. 
Nevertheless, for all of the cases shown in figure 13 (a, c), though the values of 2a/rv 
decrease to 0.06 during collision, bulging instability does not necessarily occur, 
depending on whether the sufficient condition, N,/Re,, is met or not. In addition, the 
observation of 2a/rv z 0.06 associated with the appearance of bulging instability 
provides strong evidence that vortex rings having a smaller core-size, c,,, or a smaller 
initial value of 2a/r, will result in a smaller radius, rv, when the onset of bulging 
instability appears while vortex rings having a larger initial value of c,, or 2a/rv will 
need farther stretching to satisfy 2a/r, z 0.06. This is consistent with the result 
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observed in flow visualization as addressed in 94.3. Recall that the radii of vortex rings 
associated with the onset of bulging instability were about three, four and five times 
their initial values for the orifice diameter to stroke ratio, D / L  = 2.6, 2.1 and 1.6, 
respectively. 

4.6. Rebound phenomena 
As indicated in figure 6, for lower R e ,  the calculated vorticity centres gradually moved 
towards each other and eventually moved away or rebounded from the plane of 
symmetry during collision. Actually, some of the cases shown in figure 13 (a, c) which 
do not meet the sufficient condition of bulging instability will, however, also lead to the 
rebound phenomenon according to the level-off in the 2a/r, us. time relation presented 
in figure 13 (f) ; that is, the vorticity core diameter, 2a, decreases during the stage of 
vortex stretching and then increases again with the increase of the vortex ring radius, 
r,, during the stage of dominance of viscous dissipation. Thus, the vorticity centre 
retreats or rebounds from the plane of symmetry. This rebound is different from the 
rebound observed in a vortex ring impinging normally on a solid plane surface, which 
is due to the formation of a secondary vortex generated at the wall and the mutual 
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interaction between the primary and secondary ones. The present case, however, does 
not have new vorticity generated at the colliding surface. Therefore, what causes the 
rebound in the head-on collision needs to be further clarified. It is shown in figure 6 
that this rebound phenomenon is more evident when Re, is low. Thus, we focus on the 
cases of Re, < 1500 for detailed discussion. 

One may wonder about the difference between a vorticity centre and a visualized 
vortex centre. We show in figure 14(a) various trajectories of the flow field with 
Re, = 400 and 1000, which includes the path traced out as time increases by the 
vorticity centre, P.v., the particle path for that particle of fluid which was initially 
coincident with the vorticity centre at the initial instant t = 0, p . t . ,  and the path of the 
point at which the Stokes streamfunction has a local extremum (or a streamline centre), 
p.s .  Figure 14(b) shows a close-up of the time evolution of p .v .  in the z direction for 
Re,. = 400, 1000 and 1500, respectively. Of particular interest is the fact that the 
centre’s rebound from the plane of symmetry, which occurs at t z 23 and 26 for 
Re,. = 400 and 1000, respectively, is indicated in all three trajectories. Peace & Riley 
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FIGURE 13. (a) Time evolution of NJRe,. for the cases of co = 0.15; refer to (b) for the description of 
symbols; (b) time evolution of the dimensionless radius of the vortex ring during collision 
corresponding to (a),  the calculated result, where the numbers, 1800/8 for example, means Re,. = 1800 
and so = 8; (c) time evolution of NJRe,. for the cases of co = 0.12; refer to (d) for description of 
symbols; (d) time evolution of the dimensionless radius of the vortex ring during collision 
corresponding to (c), the calculated result, where the numbers, 180016 for example, means 
Re,. = 1800 and so = 6; (e) relation between NJRe,. and 2a/r, for c, = 0.15; and (f) time evolution 
of 2a/r, for co = 0.15 and 0.12, respectively; refer to (6)  and (d), respectively, for description of 
symbols. 

(1983) have reported on this phenomenon in a numerical simulation of a two- 
dimensional vortex pair approaching a zero-stress boundary. Peace & Riley attributed 
the rebound of a vortex pair to the sink of vorticity at the stress-free boundary and 
concluded that the rebound behaviour is essentially a viscous phenomenon. In the 
present study, the feature of vortex stretching has to be incorporated. Peace & Riley’s 
explanation of the rebound in the absence of vortex stretching may not be sufficient in 
the present case. As shown in (4.6), the cancellation of circulation can only be 
examined along the boundaries; the major portion of the cancellation is along the 
colliding surface owing to the large gradients of vorticity in the z-direction along the 
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FIGURE 14. (a) Trajectories in the flow field for Re, = 400 and 1000, where P.V. is the vorticity centre; 
p . t .  is the particle trace initially coincident with the vorticity centre ; and p.s.  is the streamline centre. 
(b)  A close-up of the time evolution of p a .  in the z-direction for Re, = 400, 1000 and 1500 with 
co = 0.20 and so = 6. 

colliding plane. The degradation of circulation is the decay of total vorticity mentioned 
by Peace & Riley (1983). However, in (4.2), the time variation of the total enstrophy, 
dE/dt, explicitly involves the effect of vortex stretching and viscous dissipation ; their 
relative importance has to be assessed regarding the rebound phenomenon. 

The case of Re, = 400 with c,, = 0.20 was used as an example for further detail in the 
variation of enstrophy. Figure 15 (a)  presents the evolution of dE/dt and the respective 
effect due to the vortex stretching and viscous dissipation. Apparently, the magnitude 
of dE/dt depends on the competition between vortex stretching and viscous dissipation 
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FIGURE 15 (a). For caption see p. 69. 

as shown in the integrand of the right-hand side of (4.2). Regarding the distribution of 
the integrand of the right-hand side of (4.2), figure 15(b) presents the details. The 
contours of equivorticity for various values of time are also presented in figure 15(c) 
for reference. The lines in figure 15(b) plot magnitudes for the integrand of the right- 
hand side of (4.2) at various values of time, where the solid lines represent the contours 
of equimagnitude having positive contribution to the overall value of dE/dt whereas 
the dotted lines represent the contours of equimagnitude with negative contribution to 
the overall value of dE/dt. Again, these lines show the net contribution incorporating 
the vortex stretching and the viscous dissipation. It is seen in figure 15(b) that, during 
the free-travelling stage, i.e. t = 4 or 10 for example, the region of positive contribution 
to dE/dt or the region of solid lines is mainly distributed upstream of the vorticity 
centre; however, the net value of dE/dt over the (r,z)-plane is negative according to 
figure 15(a) while in the vortex stretching stage, when t = 16 or 22 for example, the net 
value of dE/dt is positive. It is also noticed that during the stage of vortex stretching, 
i.e. t = 16 or 22 in figure 15(b), the region which has negative contribution to dE/dt 
or the region of dotted lines is almost separated into two parts by the region having 
positive contribution. There is one located right next to the colliding surface or z = 0 
and the other located far from the colliding surface. In order to have a clear view of 
the weighting associated with these two regions of the negative contribution, we 
separate them into region I and region I1 by drawing a horizontal line passing through 
the centre of the region of positive contribution as shown in figure 15(b). Note that the 
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FIGURE 15. Calculated result for Re,. = 400 with co = 0.20 and so = 6: (a) the evolution of the total 
enstrophy, E, and its time variation, dE/dt, where the effects of vortex stretching as well as of viscous 
dissipation on dE/dt are also presented in the figure; (b) contours of equimagnitude of the integrand 
shown on the right-hand side of (4.2) at various times, where solid lines represent positive values, and 
dotted lines represent negative values; (c) contours of equivorticity lines for various time values; ( d )  
the time evolution of the weighting associated with the ratio of region I to the total negative 
contribution to dE/dt, region (I + 11); and (e)  the time evolution of the radius of vortex ring, rv, as 
well as the vorticity core diameter, 2a. 

centre of the region of positive contribution is not coincident with that of the vorticity 
centre as indicated in figure 15(b, c). Figure 15(d) shows the time evolution of the 
weighting associated with the ratio of region I to the total negative contribution to 
dE/dt, i.e. I/(I +11). It is seen in figure 15(d), for t = 16, that the negative contribution 
to dE/dt associated with region I has about 30% to the total negative contribution 
while the magnitude of 1/(1+11) goes up as time increases. Finally, in the stage of 
dominance of viscous dissipation, i.e. t > 19, the magnitude of I/(I + 11) almost reaches 
an asymptote, which is about 0.6 for t z 22 as indicated by figure 15(d). For 
Re, = 1000 with c, = 0.20, a similar trend of the change of I/(I + 11) is also observed 
in figure 15(d), and the vorticity centre is at the closest location to the plane of 
symmetry when t M 26 according to figure 14(b). Apparently, in the stage of 
dominance of viscous dissipation, the majority of the contribution to the dissipation of 
enstrophy is concentrated in the narrow region right next to the colliding surface or the 
plane of symmetry resulting from large vorticity gradients across the plane of 
symmetry, au/az,  as shown in figure 15 (c). In addition, it is also found in figure 15 (a) 
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that the rebound phenomenon occurs close to the occasion when a local minimum of 
the variation of enstrophy, dE/dt, is reached in the stage of dominance of viscous 
dissipation. In other words, the rebound phenomenon occurs at the moment when the 
effect of viscous dissipation on dE/dt is most significant relative to the effect of vortex 
stretching. 

Furthermore, figure 15 (e) presents the time evolution of the radius of the vortex ring, 
rv, as well as the vorticity core diameter, 2a, for Re, = 400, which indicates that the 
vorticity core diameter, 2 4  reaches its minimum value at t z 23 and then increases 
again owing to the dominance of viscous diffusion. This is strong evidence that the 
vorticity centre which moves apart or rebounds from the plane of symmetry is closely 
related to the increase of vorticity core diameter owing to severe dissipation of the 
enstrophy in the region next to the plane of symmetry. Therefore, it may be concluded 
that the rebound behaviour is essentially a viscous phenomenon in the sense that the 
effect of viscous dissipation predominates that of vortex stretching. 

5. Concluding remarks 
Head-on collision of two coaxial vortex rings has been carefully studied by joint 

experimental and numerical investigation. This joint investigation shows overall 
agreement, and the main results can be summarized as follows. 

(i) The results show that enstrophy, rather than circulation, reveals directly the 
effects from the vortex stretching and viscous dissipation associated with the three 
stages of vortex evolution, that is, the free-travelling stage, vortex-stretching stage, and 
the stage of dominance of viscous dissipation. 

(ii) In the stage of free travelling, the circulation of a vortex ring is almost conserved 
while the enstrophy decreases owing to viscous dissipation. 

(iii) The early stage of vortex stretching has been shown to be associated with a 
sudden increase of enstrophy in the vortex ring and a rapid degradation of circulation 
between two vortex rings while the stage of viscous dissipation dominance is 
accompanied by a decrease of enstrophy due to the dominance of viscous dissipation. 
The analysis also shows that enhancement of the vortical activity of the flow owing to 
vortex stretching is always accompanied by a speeding up of energy dissipation. 

(iv) For higher Re,, the phenomenon of bulging instability around the circumference 
of a vortex ring has been observed when vortex rings are subjected to stretching during 
collision. It is found that the occurrence of bulging instability depends on the Reynolds 
number, R e ,  the initial separation of vortex rings, so, and the initial core-size of the 
vortex ring, co. A stability map incorporating the three parameters has also been pre- 
sented based on the experimental observation. Combining the numerical and experi- 
mental results show that there exists a threshold or a sufficient condition in NJRe,  for 
bulging instability, over which threshold bulging instability will occur. The critical value 
of N,/Re, for bulging instability was observed to be larger associated with a vortex ring 
having a smaller core-size co. We also observed a necessary condition associated with 
the bulging instability; that is, when bulging instability occurred, the lengthscale ratio, 
2a/rv was always about 0.06. This verifies that vortex rings with a larger core-size, c,, 
or a larger initial value of 2a/r,  will need farther stretching in the r-direction when the 
onset of bulging instability appears. This observation not only enables us to assess the 
range of validity of the axisymmetry assumed for numerical simulation, but also 
provides us with a rational basis for further theoretical analysis of azimuthal 
instability. 

(v) The rebound behaviour of vortex rings has been observed in the stage of 
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dominance of viscous dissipation and has been found, indeed, to be related to the 
increase of vorticity core diameter owing to severe viscous dissipation, when the rate 
of change of enstrophy reaches a negative minimum with the effect of viscous 
dissipation predominating that of vortex stretching. 
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